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We study the relaxation behavior of hierarchical systems whose conformation
space topology deviates from ultrametricity under selective controllable condi-
tions. While the Debye law is obtained in the ultrametric case, Kohlrausch
relaxation is shown to be directly related to the level of ruggedness beyond the
ultrametric limit, making the B exponent computationally accessible.

Glassy relaxation is the subject of considerable theoretical and experi-
mental current research. This phenomenon has been found to underlie the
dynamics of a vast range of complex systems belonging to a broad spec-
trum of interdisciplinary areas, ranging from disordered condensed matter
to molecular biophysics.(1-26) Thus, the understanding of its generic basis
emerges as a universal issue.

Within this context, the empirical fit known as Kohlrausch l aw ( 1 ) is
ubiquitous in the relaxation phenomenology of a wide range of strongly
interacting systems including spin glasses,(2-6) glasses,(7) dielectric mate-
rials(8-10) and biopolymers.(11) This "anomalously" slow relaxation law is
fitted by a stretched exponential of the form:
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where q( t ) represents a generic relaxation quantity with Q = q(0), T is a
characteristic timescale and 0 < B< 1. The limit case B = 1 corresponds to
purely exponential or Debye relaxation. The universality of this law and
the diversity of materials where it holds valid suggest that the underlying
physics might only be sensitive to certain generic features shared by
systems with highly degenerate ground states conforming a rugged free
energy landscape with valleys separated by high barriers.

From a theoretical standpoint, such relaxation processes have been
shown to be encompassed within the realm of dynamics in ultrametric
spaces.(12-15) This approach was motivated by the ultrametric topology
with which the ground state of the Sherrington-Kirkpatrick (SK) spin
glass model(16) is endowed in the mean-field description.(17,18,3,12) But this
picture represents an extremely simplifying limit case for the relaxation of
complex systems.(12) The existence of a rugged free energy landscape
implies that the system breaks ergodicity and that phase space can be
decomposed in a hierarchy of components or clusters of states,(19) but need
not necessarily satisfy strictly the strong triangular inequality that deter-
mines a perfect ultrametric topology (d(x, y ) < m a x [ d ( x , z), d(y, z)]) . This
strong triangular inequality rules out the possibility for cooperative effects
or the existence of locally preferred pathways (states z acting as inter-
mediates for the transition from state x to state y). This fact implies that the
transition probability between any two given states depends only on their
ultrametric distance, with no role left to correlated interactions. Thus, ultra-
metricity translates in a free energy landscape with a fixed ruggedness.

Deviations from ultrametricity are expected in real systems with
correlated interactions not accounted for in the mean-field SK model, and
work has been done to characterize and quantify these deviations.(12,20)

Deviations from ultrametricity have been found to play a central role in the
folding of random heteropolymers within a model with a locally connected
correlated energy landscape,(21) and seem to have arisen in a study of over-
laps between ribonucleic acid (RNA) secondary structures.(22)

In systems with correlated interactions, the deviations from ultra-
metricity must be reflected in the free energy landscape which must be
rougher than the one originated in the ultrametric picture. Our aim is then
to explore the connection between relaxation and the ruggedness of the free
energy landscape beyond the ultrametric limit. More specifically, we shall
identify the level of ruggedness directly responsible for the occurrence of
Kohlrausch relaxation law in systems which would follow the Debye
exponential law in the ultrametric limit. Furthermore, our results will dis-
play a qualitative dependence of Kohlrausch's exponent, B, on the rugged-
ness of the free energy landscape beyond the ultrametric limit in accord
with experimental findings.(23,24) This type of study demands dynamic
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simulations where the level of ruggedness may be altered selectively under
controllable conditions.

The investigation of the relaxation behavior in rugged free energy
landscapes requires that we make use of a model that deviates from the
ultrametric tree of Fig. 1. We are only interested in the generic effect on the
relaxation behavior of the ruggedness of the free energy landscape beyond
ultrametricity, since we intend to address the common physical origin of
this rather universal phenomenon. Thus, we shall implement a minimal
model of rugged landscape which should be regarded as a precursor for a
correlated system, and shall not be concerned with the physical origin of
interactions giving rise to correlations.

As a limit for our rugged model we shall take the ultrametric model
by Ogielski and S te in ( 1 5 ) (Fig. 1) with the choice B(m) = RT1nm for
the scaling of the barriers with the ultrametric distance. This case leads
to Debye exponential relaxation or, equivalently, to the limit B = 1 of
Kohlrausch law, and represents the limit of convergence of the model. The
dependence B = B(m) represents the key feature in these models since a
variety of relaxation behaviors is obtained depending on the particular
choice performed.(15,12) Moreover, the resulting relaxation law is robust,
since it has been found not to be sensible to the shape of the ultrametric
tree (the relaxation can be faster or slower, but the functional dependence
and the exponent remain the same).(13,25,26) However, we must note that

Fig. 1. Tree structure of the ultrametric space for a hierarchical system. The tree is regular
and has branching ratio K=2. The distance between any two given points is m, the level of
their common ancestor, and the dynamics is generated by temperature-assisted hoppings over
potential barriers B = B(m) which are monotonically increasing functions of m. Thus, the
probability of surmounting a barrier of level m, W(m), is W(m) =exp[ — B(m)/RT], where R
is the gas constant and T is the absolute temperature. Walks are defined at the upper level
(m=0) and initially, the autocorrelation functions is P0(t = 0) = 1, while Pk(t = 0) = 0 for any
other state k.
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this choice has been always made in an ad hoc manner, since no physical
reason has been invoked to single out one particular dependence. In
this case, our choice shall be justified later using a variational or least-
action approach which will provide the physical grounds to our model by
revealing that the favored pathway is not only the most economical at each
step of relaxation but it also minimizes the over-all relaxation timespan.

In our paradigm model, the tree of Fig. 1 defines the connectivities
and the distances. However, the barrier corresponding to a jump between
states a distance m is chosen from a distribution centered at the value of
RT 1n m. The mean of each distribution moves with m in the same way as
B in the ultrametric limit case. The disorder built upon ultrametricity is
quenched by constructing the transition probability matrix at the beginning
of the process and fixing it throughout the simulation. As in the ultrametric
case, once a jump of height m occurs, the walker lands with equal prob-
ability in any of its 2m-1 neighbors of the corresponding cluster (the tran-
sition probabilities for jumps of a given height m depend only on the initial
state). In our present case of uniform distributions, the barriers were
chosen from: B = (In w)[ 1 + 2a(0.5 — P ) ] , with P a variable uniformly dis-
tributed in [0, 1] and a, 0<a< 1, a parameter that modulates the devia-
tion. The results obtained are insensitive to the shape of the distribution
used. Thus, the departure from Debye law due to the controlled increase in
ruggedness built upon ultrametricity follows the same semi-empirical fit
regardless of whether the distribution is gaussian or uniform. The role of
the distributions is merely to provide a simple means of selectively intro-
ducing a variable and controllable ruggedness in the free energy landscape
which should arise beyond the ultrametric limit. The microscopic physical
origin of this picture is immaterial from a phenomenological standpoint,
since we only intend to show the change in relaxation behavior as the
system deviates from the ultrametric representation. The free energy
landscape generated by this model has a ruggedness that increases with the
value of a (a = 0 corresponds to the ultrametric case). Thus, different
pathways connect locally any two given states, thereby providing a richer
picture than the ultrametric model. For example, the mean transition time
from a given state to another placed at distance m is completely determined
by the value of m in the ultrametric model. In our model, neighbors a dis-
tance m', with m' < m, may provide faster or slower pathways.

The relaxation behavior was studied by means of kinetically-controlled
Monte Carlo simulations consistent with usual kinetic algorithms.(27) In
our simulations, the walker starts at the origin and performs jumps of
height m, landing with equal probability in one of the corresponding 2m-1
sites. The probabilities of performing jumps of given heights are propor-
tional to the transition probabilities W(m). The time for each Monte Carlo

672 Appignanesi et a/.



Relaxation and Ruggedness beyond the Ultrametric Limit 673

step or transition, tstep, is chosen as follows: tstep = —In P/Em W(m), where
P is a variable uniformly distributed in [0,1]. The number of levels
accounted for in our model was 100 and thus, 2100 sites were included.

Figure 2 displays the time-dependence of < R ( t ) > , the average distance
traveled by the walker, in log-log scale. The straight line plots clearly
indicate that we have reproduced the stretched exponential behavior, since
< R ( t ) > is given by (15 ,12 )

where d(k, j) is the ultrametric distance between site k and site j, and Pk(t)
is the probability of finding the particle at site k at time t. This leads to an
autocorrelation function that displays Kohlrausch relaxation

with RT<00A and R T / A = B , once P0(t) is identified with q(t) of Eq. 1.(15,28)

Debye or exponential relaxation behavior is obtained when A = RT. The
parameter K is the branching ratio, as indicated in the legend of Fig. 1.

We can see that the ultrametric case (a = 0) shows exponential Debye
relaxation. For all other values of a characterizing the level of ruggedness,

Fig. 2. Log-log plot lor the time-dependent behavior of < R ( t ) > lor selected values of a
( 0 < a < 1 ) . The values of B are obtained from the slopes of the straight lines well before the
asymptotic regime is reached, as given by Eqs. 2 and 3. The existence of an asymtotic value
for < R ( t ) > is due to the finite size of the system (m= 100) used in the simulations.
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the relaxation is found to follow Kohlrausch law. This result reveals that
departures from pure exponential behavior are due to deviations from
ultrametricity which give rise to a rugged free energy landscape and makes
the phenomenological exponent B computationally accessible.

Figure 3 depicts the dependence on a of the Kohlrausch exponent, B.
From these results we learn that B decreases with the increase in the value
of a. Thus, as intuition dictates, an increase in the level of ruggedness of
the landscape leads to a slower relaxation behavior and, most importantly,
the relaxation is invariably fitted to a Kohlrausch stretched exponential.
A similar qualitative behavior has been found experimentally in the context
of glassy ionic conductors where relaxation has been found to follow a
Kohlrausch law with the exponent B nearly 1 (Debye or exponential law)
when the mobile ion concentration is very small, and decreasing with an
increment in the mobile ion concentration.(23,24) This change in relaxation
behavior cannot be explained by the ultrametric models since any choice in
B = B(m) leads to only one relaxation law. In accord with our results, the
observed behavior may be due to correlations that make the system deviate
from the ultrametric case with concomitant increase in the ruggedness. We
conjecture that the mean-field ultrametric description captures the intrinsic
disorder of the glassy material, but there exists an additional dynamic dis-
order built upon ultrametricity and due to correlated interactions between
mobile ions.

At this point we state the variational principle that led us to make the
choice in B = B(m). As already pointed out, the choice in the scaling of

Fig. 3. The ruggedness dependence of relaxation: Kohlrausch exponent, B, as a function of a.



barriers with m represents the key feature in the problem of relaxation in
ultrametric spaces, but has been always made in an ad hoc manner. We
shall show that glassy relaxation is singled out by a brachistochrone, or
least over-all relaxation pathway, thus suggesting the existence of a varia-
tional principle underlying the rather universal phenomenon of relaxation
in rugged free energy landscapes. A Fermat-like variational principle of this
kind has been stated by us in the context of the relaxation of disordered
biopolymers.(29)

For mathematical convenience we shall concentrate in the ultrametric
case (a = 0). To place the system within a variational context, we define
a generic relaxation coordinate X and attempt to single out a specific
behavior X=X(B). Without loss of generality, we shall focus on a generic
situation in which the expected barrier B = B(m) encountered at level m
grows monotonically with m, as is the case when relaxation steps become
increasingly difficult in time, and the progress of relaxation may be
monitored by a single-valued function X = X ( B ) which is monotonically
increasing in time.

Under these tenets, the path integral giving the over-all relaxation time
is:(29)
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where X' = dX/dB, (1 + (x')2)1/2 dB is the arc differential and f-1 exp(B/RT)
is the reciprocal of the velocity for an activated process with barrier B and
unimolecular rate constant f. (29-32) By solving the Euler-Lagrange equa-
tions associated to the action given by Eq. 4, we find the brachistochrone,
that is, the relaxation pathway that minimizes the over-all time. This path-
way is defined by the following equations:(29)

where F = f/RT and c is an integration constant with dimensions of
[time/energy]. Equation 5 reveals the scaling of barriers with X. We can
verify that the growth of the expected barrier corresponds to the
logarithmic growth of barriers with m, as in the particular case of the
Ogielski-Stein model(15) we used as a limit for our rugged model (a = 0).
This is so since the ultrametric distance m ranges from zero to infinity,



where R(t) is the distance traveled in the random walk, and we have made
use of the transformation Y=tan(X/(RT)) in Eq. 7. That is, in the
ultrametric description, the Debye exponential relaxation law is the
signature of the brachistochrone if the time evolution of the system is
monitored adopting the representation Y = m. This relaxation law is
precisely the fastest relaxation regime yielding a stable random walk within
the Ogielski-Stein ultrametric model(15) and points to the validity of the
variational principle. Kohlrausch relaxation law should arise in real
systems as a consequence of the increase in the ruggedness of the free
energy landscape, as revealed by our simulations.

In this work we have demonstrated that a ruggedness of the free
energy landscape built upon the ultrametric topology is a key factor to
explain Kohlrausch relaxation law. In spite of its simplicity, our model may
be viewed as a paradigm providing the theoretical underpinnings of com-
plex relaxation behavior in more realistic contexts beyond the ultrametric
limit. Our simulations also displayed a decrease in the exponent B of
Kohlrausch law with the increase in the ruggedness of the free energy
landscape in solid agreement with recent experimental probes.(23,24)

Finally, our results also reveal the existence of a variational principle
underlying glassy relaxation and explain the expediency of experimentally-
probed relaxation pathways.
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